

PLEASE - BEFORE YOU TRY IT YOUR WAY, TRY IT OURS!

Syntactic Foam Machining Guide

Syntactic materials are generally easy to machine, frequently requiring no secondary polishing or surface preparation. Following the guidelines listed below will improve surface quality of the finished part and ensure consistency in performance. Cutting tools are available from ESS or Onsrud Cutter directly (800) 234-1560.

2 Flute, Plastic Cutting Tools SHARP TOOLS are required. Syntactic foams are abrasive. Check cutting edges and monitor plug surface for evidence of dull tooling. Speed and Feed Varies by tool geometry and size. Use "Chip Load" (the measurement of thickness of material removed by each cutting edge during a cut) from tooling manufacturer to develop feed rate. Calculate Feed Rate (inches/minute) using the formula: Feed Rate = Chip Load x Spindle RPM x # of flutes. For ESS supplied tools from this guide, the following feed rate calculations apply: Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM 2500 5000 7500 10000 12,500 15000 17,500 20,000 0.002 10 20 30 40 50 60 70 80 0.003 15 30 45 60 75 90 105 120 0.003 15 30 45 60 75 90 105 120 0.004 20 40 60 80 100 120 140 160 0.005 25 50 75 100 125 150 175 200 0.007 35 70 105 140 175 210 245 280 0.007 35 70 105 140 175 210 245 280 0.007 35 70 105 140 175 210 245 280 0.007 35 70 105 140 175 210 245 280 0.009 45 90 135 180 225 270 315 360 0.01 50 100 150 200 250 300 350 400 Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining.	Cutter Type	•	Solid Carbide												
SHARP TOOLS are required. Syntactic foams are abrasive. Check cutting edges and monitor plug surface for evidence of dull tooling. Speed and Feed • Varies by tool geometry and size. • Use "Chip Load" (the measurement of thickness of material removed by each cutting edge during a cut) from tooling manufacturer to develop feed rate. • Calculate Feed Rate (inches/minute) using the formula: Feed Rate = Chip Load x Spindle RPM x # of flutes. • For ESS supplied tools from this guide, the following feed rate calculations apply: Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM 2500 5000 7500 10000 12,500 15000 17,500 20,000 0.002 10 20 30 40 50 60 75 90 105 120 0.003 15 30 45 60 75 90 105 120 0.003 15 30 45 60 75 90 105 120 0.003 15 30 45 60 75 90 105 120 0.005 25 50 75 100 125 150 175 200 0.006 30 60 90 120 150 180 210 240 0.007 35 70 105 140 175 210 245 280 0.009 45 90 135 180 225 270 315 360 0.01 50 100 150 200 250 300 350 400 Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized now part finish deteriorates. 5. Clear removed thips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining.															
Evidence of dull tooling.		SHARP TOOLS are required. Syntactic foams are abrasive. Check cutting edges and monitor plug surface for													
See "Chip Load" (the measurement of thickness of material removed by each cutting edge during a cut) from tooling manufacturer to develop feed rate. Calculate Feed Rate (inches/minute) using the formula: Feed Rate = Chip Load x Spindle RPM x # of flutes. For ESS supplied tools from this guide, the following feed rate calculations apply: Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM															
from tooling manufacturer to develop feed rate. Calculate Feed Rate (inches/minute) using the formula: Feed Rate = Chip Load x Spindle RPM x # of flutes. For ESS supplied tools from this guide, the following feed rate calculations apply: Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM 2500 5000 7500 10000 12,500 15000 17,500 20,000 0.002 10 20 30 40 50 60 70 80 0.003 15 30 45 60 75 90 105 120 0.0035 18 35 53 70 88 105 123 140 0.0035 18 35 53 70 88 105 123 140 0.004 20 40 60 80 100 120 140 160 0.007 35 70 105 140 175 210 245 280 0.007 35 70 105 140 175 210 245 280 0.009 45 90 135 180 225 270 315 360 0.01 50 100 150 200 250 300 350 400 Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining.	Speed and	•													
from tooling manufacturer to develop feed rate. Calculate Feed Rate (inches/minute) using the formula: Feed Rate = Chip Load x Spindle RPM x to of flutes. For ESS supplied tools from this guide, the following feed rate calculations apply: Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM 2500 5000 7500 10000 12,500 15000 17,500 20,000 0.002 10 20 30 40 50 60 70 80 0.003 15 30 45 60 75 90 105 120 0.0035 18 35 53 70 88 105 123 140 0.004 20 40 60 80 100 120 140 160 0.007 35 70 105 120 125 150 175 200 0.007 35 70 105 140 175 210 245 280 0.007 35 70 105 140 175 210 245 280 0.009 45 90 135 180 225 270 315 360 0.01 50 100 150 200 250 300 350 400 Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining.	Feed	from tooling manufacturer to develop feed rate.													
For ESS supplied tools from this guide, the following feed rate calculations apply: Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM		•	· · · · · · · · · · · · · · · · · · ·												
Number shown in bold is feed rate in inches/minute. Use formula above for metric tool calculations. Spindle RPM															
		•													
0.002 10 20 30 40 50 60 70 80															
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining.				2500	5000	7500	10000	12,500	15000	17,500	20,000				
O.0035 18 35 53 70 88 105 123 140			0.002	10	20	30	40	50	60	70	80				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining.			0.003	15	30	45	60	75	90	105	120				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant • None, or air			0.0035	18	35	53	70	88	105	123	140				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant • None, or air		ad	0.004	20	40	60	80	100	120	140	160				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air		hip Lo	0.005	25	50	75	100	125	150	175	200				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air			0.006	30	60	90	120	150	180	210	240				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant • None, or air		\parallel									280				
Optimization techniques 1. Experiment with the maximum possible chip size. Use feed rate as determined from the chip load rating and your machine RPM. 2. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. 3. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air											360				
techniques your machine RPM. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air															
techniques your machine RPM. Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air	Optimization	1.	Experiment v	vith the n	naximum r	ossible ch	in size. Use f	eed rate as de	etermined fro	om the chip lo	ad rating and				
 Increase feed rate until the part finish begins to deteriorate. Decrease feed rate 10%. Decrease RPM by some set increment until surface finish begins to deteriorate. Once this happens, increase RPM until finish is again acceptable. Speed and feed are now optimized in your process. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air 	·	·													
RPM until finish is again acceptable. Speed and feed are now optimized in your process. 4. Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air		2.	·												
 Usage of separate tools for roughing and finishing allows rotation of finish tool into roughing position when part finish deteriorates. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air		3.	·												
part finish deteriorates. 5. Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air															
 Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air		4.													
NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in a tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air		 Clear removed chips to prevent premature tool wear. NOTE: Too low a feed rate will generate excess heat and reduce tool life. Proper settings will result in 													
tool operating at or near room temperature. Too high a feed rate will cause poor surface finish or part movement during machining. Coolant None, or air															
movement during machining. Coolant None, or air															
Coolant • None, or air															
	Coolant	•													
riotection • Enclose Chip Space, dust extraction, safety goggles, dust mask, protective gloves	Protection	•		space, du	ıst extracti	on, safetv	goggles, dus	t mask, prote	ctive gloves						

TB 111312

Syntactic Foam Machining Tools

Double Flute Upcut Spiral

High helix geometry with a special point for upward chip flow, <u>smooth sidewall</u> and improved bottom finish.

Conventional cutting for roughing and finishing is recommended with these tools.

										II .	
					Roughing F	Roughing Parameters Finishi			Parameters		
Part # Cutting Diameter		Flute Length	Shank Diameter	Overall Length	Slotting* RDOC ⁱ = 100% ADOC ⁱⁱ = up to 1xD ⁱⁱⁱ	Profiling* RDOC ⁱ = 100% ADOC ⁱⁱ = up to 1xD ⁱⁱⁱ			RDOC ⁱ = 4	Floors* RDOC ⁱ = 40-65% ADOC ⁱⁱ = below	
Part #	Cut	Figure	Sha	Ove	Chip load	Chip load	Chip load	RDOC	Chip load	ADOCii	
52-703	1/8"	1/2"	1/4"	2"	.002003"	.002004"	.002"	.01"	.002"	.005"	
52-707	1/4"	7/8"	1/4"	3"	.003004	.003005	.003	.02	.003	.01	
52-710	3/16"	5/8"	1/4"	2-1/2"	.003004	.003005	.003	.01	.003	.005	
52-709	3/8"	1"	3/8"	3"	.003005	.003007	.004	.03	.004	.01	
52-702	1/2"	1-1/4"	1/2"	4"	.004007	.004009	.004	.04	.004	.015	
52-706	1/2"	2-1/8"	1/2"	4"	.004007	.004009	.004	.04	.004	.015	
52-712	5/8"	1-3/4"	5/8"	5"	.004008	.004010	.004	.04	.004	.02	
52-724	3/4"	2-1/2"	3/4"	5″	.004008	.004010	.005	.05	.005	.02	
52-742	12mm	35mm	12mm	100mm	.1018mm	.1023mm	.10mm	1mm	.10mm	.4mm	
52-744	12mm	45mm	12mm	100mm	.1018	.1023	.10	1	.10	.4	
52-746	12mm	55mm	12mm	100mm	.1018	.1023	.10	1	.10	.4	
52-752	16mm	45mm	16mm	120mm	.1020	.1025	.10	1	.10	.5	
52-754	16mm	55mm	16mm	120mm	.1020	.1025	.10	1	.10	.5	
52-764	20mm	65mm	20mm	125mm	.1020	.1025	.13	1.3	.13	.5	

Syntactic Foam Machining Tools

High Finish Ball Nose

3D contouring of syntactic materials. Unique geometry and highly polished surface result in a smooth surface without tool marks.

Conventional cutting is recommended for roughing and finishing with these tools.

Part#	Cutting Diameter	Flute Length	Shank Diameter	Overall Length	Roughing Parameters* RDOC ⁱ = 33% ADOC ⁱⁱ = up to 2xD ⁱⁱⁱ	Finishing Parameters*		
					Chip load	Chip load	RDOC ¹	ADOC"
65-210B	1/8"	1/2"	1/8"	2-1/2"	.002004"	.002"	.002003"	.005"
65-225B	1/4"	1-1/8"	1/4"	3"	.003005	.003	.002003	.01
65-215B	3/16"	1/2"	1/4"	2-1/2"	.003005	.003	.002003	.005
65-250B	3/8"	1-1/8"	3/8"	3"	.003007	.004	.004006	.01
65-280B	3mm	12mm	3mm	64mm	.0510mm	.05mm	.0507mm	.13mm
65-285B	6mm	20mm	6mm	76mm	.0713	.07	.0509	.25
65-290B	8mm	25mm	8mm	76mm	.0715	.10	.0115	.25
65-295B	10mm	30mm	10mm	76mm	.0718	.10	.1015	.38

Syntactic Foam Machining Tools

Tapered Ball Nose Available with a variety of taper angles and optimized geometry to produce a good edge finish. **Slotting Parameters* Profiling Parameters*** RDOCⁱ = 100% $RDOC^{i} = 100\%$ Cutting Diameter Shank Diameter Overall Length Radius Flute Length Part# Flutes Chip load Chip load 1/8" 1/4" .003" 77-102 1-1/2" 1/16" .002 - .0035" 77-104 1" 1/4" 3⁰ 1/8" 3" 3 1/16" .003 - .004 .005 3⁰ 77-112 1/4" 2" 1/2" 4" 2 1/8" .003 - .004 .005 5⁰ 77-114 1/4" 1-3/8" 1/2" 4" 2 1/8" .004 - .005 .006 1⁰ 77-102M 39mm 76mm 3 1.6mm .05 - .09mm .07mm 3mm 6mm

3⁰

3⁰

5⁰

1.6mm

3.2mm

3.2mm

.07 - .10

.07 - .10

.10 - .13

3

2

3mm

6mm

6mm

25mm

50mm

35mm

6mm

12mm

12mm

76mm

100mm

100mm

77-104M

77-112M

77-114M

.25

.13

.15

¹ RDOC: Radial Depth of Cut – the depth of the tool along its radius in the work piece as it makes its cut. Parameters referenced as a percentage (%) mean the tool should engage an amount of material equal to the % specified of the tool diameter. Areas referenced with a specific dimension should engage the dimension listed.

ⁱⁱ ADOC: Axial Depth of Cut – the depth of the tool along its axis in the work piece as it makes its cut. Parameters referenced as a percentage (%) mean the amount of material surface cut away will equal the cutting tool diameter at the % specified. Areas referenced with a specific dimension should cut the depth material at the depth dimension listed.

iii D: Cutting Diameter of Tool.